Skip to main content
Characterization of lipoprotein lipase storage vesicles in 3T3-L1 adipocytes.

Roberts, B. S., Yang, C. Q., & Neher, S. B. (2022).

Journal of Cell Science, 135(5).

Comparison of angiopoietin-like protein 3 and 4 reveals structural and mechanistic similarities.

Gunn, K. H., Gutgsell, A. R., Xu, Y., Johnson, C. V., Liu, J., & Neher, S. B. (2021).

Journal of Biological Chemistry, 296, 100312.

The structure of helical lipoprotein lipase reveals an unexpected twist in lipase storage.

Gunn K.H., Roberts, B.S., Wang F., Strauss J.D., Borgnia M.J., Egelman E.H., & Neher, S.B. (2020).

Proc Natl Acad Sci, Apr 24.

A dual apolipoprotein C-II mimetic-apolipoprotein C-III antagonist peptide lowers plasma triglycerides.

Wolska A., Lo L., Sviridov D.O., Pourmousa M., Pryor M., Ghoush S.S., Kakkar R., Davidson M, Wilson S, Pastor R.W., Goldberg I.J., Basu D., Drake S.K., Cougnoux A., Wu M.J., Neher S.B., Freeman L.A., Tang J., Amar M., Devalaraja M., & Remaley A.T. (2020).

Science Translational Medicine. Jan 29;528(12).

Endoplasmic reticulum quality control in lipoprotein metabolism.

Koerner, C. M., Roberts, B. S., & Neher, S. B. (2019).

Molecular and Cellular Endocrinology, 498, 110547.

Protecting activity of desiccated enzymes.

Piszkiewicz, S., Gunn, K. H., Warmuth, O., Propst, A., Mehta, A., Nguyen, K. H., Kuhlman, E., Guseman, A. J., Stadmiller, S. S., Boothby, T. C., Neher, S. B., & Pielak, G. J. (2019).

Protein Science, 28(5), 941–951.

Mapping the sites of the lipoprotein lipase (LPL)–angiopoietin-like protein 4 (ANGPTL4) interaction provides mechanistic insight into LPL inhibition.

Gutgsell, A. R., Ghodge, S. V., Bowers, A. A., & Neher, S. B. (2019).

Journal of Biological Chemistry, 294(8), 2678–2689.

Coexpression of novel furin-resistant LPL variants with lipase maturation factor 1 enhances LPL secretion and activity.

Wu, M. J., Wolska, A., Roberts, B. S., Pearson, E. M., Gutgsell, A. R., Remaley, A. T., & Neher, S. B. (2018).

Journal of Lipid Research, 59(12), 2456–2465.

Lipase maturation factor 1 affects redox homeostasis in the endoplasmic reticulum.

Roberts, B. S., Babilonia‐Rosa, M. A., Broadwell, L. J., Wu, M. J., & Neher, S. B. (2018).

The EMBO Journal, 37(19).

We FRET so You Don’t Have To: New Models of the Lipoprotein Lipase Dimer.

Hayne, C. K., Yumerefendi, H., Cao, L., Gauer, J. W., Lafferty, M. J., Kuhlman, B., Erie, D. A., & Neher, S. B. (2018).

Biochemistry, 57(2), 241–254.

Biochemical Analysis of the Lipoprotein Lipase Truncation Variant, LPLS447X, Reveals Increased Lipoprotein Uptake.

Hayne, C. K., Lafferty, M. J., Eglinger, B. J., Kane, J. P., & Neher, S. B. (2017).

Biochemistry, 56(3), 525–533.

Modulation of the Activity of Mycobacterium tuberculosis LipY by Its PE Domain.

Garrett CK, Broadwell LJ, Hayne CK, Neher SB.

PLoS One. 2015 Aug 13;10(8).

Purification, cellular levels, and functional domains of Lipase Maturation Factor 1.

Babilonia-Rosa, M. and Neher, SB

BBRC, 2014, July 18; 450(1) 423-8.

Signal Recognition Particle-Ribosome Binding Is Sensitive To Nascent-Chain Length.

Noriega TR, Tsai A, Elvekrog MM, Petrov A, Neher SB, Chen J, Bradshaw N, Puglisi JD, Walter P.

J Biol Chem. 2014 May 7

Heat shock transcription factor σ(32) co-opts the signal recognition particle to regulate protein homeostasis in E. coli. 

Lim B, Miyazaki R, Neher S, Siegele DA, Ito K, Walter P, Akiyama Y, Yura T, Gross CA.

PLoS Biol. 2013 Dec;11(12)

Angiopoietin-like Protein 4 Inhibition of Lipoprotein Lipase: Evidence for Reversible Complex Formation

Lafferty MJ, Bradford KC, Erie DA and Neher SB

Journal of Biological Chemistry, 2013 Oct 4;288(40):28524-34

Concerted Complex Assembly and GTPase Activation in the Chloroplast Signal Recognition Particle Biochemistry.

Nguyen TX, Chandrasekar S, Neher S, Walter P, Shan SO

Biochemistry. 2011 Aug. 50(33): 7208-17

Signal sequences activate the catalytic switch of SRP RNA

Bradshaw N*, Neher SB*, Booth DA, Walter, P.

Science, 2009 Jan; 323(5910): 127-30. *equal contribution

SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction.

Neher SB*, Bradshaw N*, Floor S, Gross JD, Walter P.

Nature Structural and Molecular Biology, 2008, Sept; 15(9): 916-23 *equal contribution

Ligand-controlled proteolysis of the Escherichia coli transcriptional regulator ZntR.

Pruteanu M, Neher SB, Baker TA.

J Bacteriol. 2007 Apr;189(8):3017-25

Proteomic profiling of ClpXP substrates following DNA damage reveals extensive instability within SOS regulon.

Neher SB, Villen J, Oakes EC, Bakalarski CE, Sauer RT, Gygi SP, Baker TA.

Mol Cell. 2006 Apr 21;22(2):193-204

Sculpting the proteome with AAA(+) proteases and disassembly machines.

Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM, Grant RA, Hersch GL, Joshi SA, Kenniston JA, Levchenko I, Neher SB, Oakes ES, Siddiqui SM, Wah DA, Baker TA.

Cell. 2004 Oct 1;119(1):9-18.

Distinct peptide signals in the UmuD and UmuD’ subunits of UmuD/D’ mediate tethering and substrate processing by the ClpXP protease.

Neher SB, Sauer RT, Baker TA.

Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13219-24.

Latent ClpX-recognition signals ensure LexA destruction after DNA damage.

Neher SB, Flynn JM, Sauer RT, Baker TA.

Genes Dev. 2003 May 1;17(9):1084-9.

Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals.

Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA.

Mol Cell. 2003 Mar;11(3):671-83.